International Journal of Engineering, Science and Mathematics

Vol. 7, Issue 2, February 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Semi-symmetric Metric Connection on a LP-Sasakian Manifold

* Prabhat Narayan Singh

**S. K. Dubey

Key words :	Abstract
Semi-symmetric metric connection, LP-Sasakian manifold, Curvature tensor, Ricci tensor.	In this paper we have introduced a type of semi-symmetric metric connection on a LP-Sasakian manifold and obtained the expression for curvature tensor. We have also studied conformal curvature tensor, conharmonic curvature tensor, concircular curvature tensor and projective curvature tensor for this connection.
	Copyright © 201x International Journals of Multidisciplinary Research Academy. All rights reserved.

Author's

1. Introduction

Let (V_n, g) be a n-dimensional Riemannian manifold of class C^{∞} with metric tensor 'g' and 'D' be Levi-Civita connection on V_n . A linear connection 'E' on (V_n, g) is said to be semi-symmetric ([2]) if the torsion tensor T of the connection 'E' satisfy

$$T(X,Y) = \pi(Y)X - \pi(X)Y, \tag{1.1}$$

where π is a 1-form on V_n with ' ρ ' as associated vector field, i.e.

$$\pi(X) = g(X, \rho), \tag{1.2}$$

^{*}Department of Mathematics ,St. Andrew's College, Gorakhpur, India

^{**}Department of Mathematics ,ITM, GIDA, Gorakhpur, India

for arbitrary vector field X on V_n .

A semi-symmetric connection 'E' is called semi-symmetric metric connection ([4]) if it further satisfies

$$E_{x}g = 0. (1.3)$$

Let V_n is a 'n' dimension C^{∞} manifold. On V_n there exist a tensor 'F' of type (1, 1), a vector field U, a 1-form 'u' and Lorentzian metric 'g' such that

$$\bar{\bar{X}} = X + u(X)U, \tag{1.4}$$

$$u(\bar{X}) = 0, (1.5)$$

$$g(\overline{X}, \overline{Y}) = g(X, Y) + u(X).u(Y), \tag{1.6}$$

$$g(X,U) = u(X), \tag{1.7}$$

$$(D_{X}F)Y = g(X,Y)U + u(Y)X + 2u(X)u(Y)U,$$
(1.8)

$$D_{\mathbf{v}}U = \overline{X},\tag{1.9}$$

where $F(X) \stackrel{\text{def.}}{=} \overline{X}$ for arbitrary vector field X, Y. Then V_n satisfying above equations is called LP-Sasakian manifold and $\{F, u, U, g\}$ is called LP-Sasakian structure on V_n . Here 'D' is Levi-Civita connection with respect to 'g'.

In LP-Sasakian manifold, we have

$$u(U) = -1,$$
 (1.10)

$$\operatorname{rank}(F) = n - 1,\tag{1.11}$$

$$g(\bar{X}, Y) = g(X, \bar{Y}). \tag{1.12}$$

Let us define fundamental 2-form 'F on a LP-Sasakian manifold as below

$$F(X,Y) = g(\bar{X},Y), \tag{1.13}$$

then, we have

$$F(X,Y) = F(Y,X),$$
 (1.14)

$$F(\bar{X}, \bar{Y}) = F(X, Y), \tag{1.15}$$

and

$${}^{\prime}F(X,Y) = (D_X u)Y, \tag{1.16}$$

On a LP-Sasakian manifold, we can easily verify

$$(D_{x}'F)(Y,Z) = g(X,Y).u(Z) + g(X,Z).u(Y) + 2u(X).u(Y).u(Z),$$
(1.17)

$$(D_{X}'F)(Y,U) = -g(\bar{X},\bar{Y}),$$
 (1.18)

$$g(K(X,Y,Z),U) = u(K(X,Y,Z)) = g(Y,Z).u(X) - g(X,Z).u(Y), \tag{1.19}$$

$$K(X,Y,U) = u(Y)X - u(X)Y,$$
 (1.20)

$$K(U, X, Y) = g(X, Y) \cdot U - u(Y) X,$$
 (1.21)

$$K(U, X, U) = X - u(X).U,$$
 (1.22)

$$Ric(X,U) = (n-1)u(X).$$
 (1.23)

2. Semi-symmetric metric connection

On V_n , we define a connection 'E' satisfying

$$E_{x}Y = D_{x}Y + u(Y).X - g(X,Y)U$$
 (2.1)

$$E_X g = 0, (2.2)$$

then torsion 'T' of 'E' is given by

$$T(X,Y) = E_X Y - E_Y X - [X,Y] = u(Y)X - u(X)Y.$$
(2.3)

Here E is called semi-symmetric metric connection on LP-Sasakian manifold V_n .

Let 'R' is curvature tensor of E and 'K' is curvature tensor of connection D, then

$$R(X,Y,Z) = K(X,Y,Z) + \{g(\overline{Y},\overline{Z}) - g(\overline{Y},Z)\}X - \{g(\overline{X},\overline{Z}) - g(\overline{X},Z)\}Y$$
$$+u(X).g(Y,Z)U - u(Y).g(X,Z)U + g(X,Z)\overline{Y} - g(Y,Z)\overline{X}, \tag{2.4}$$

where

$$K(X,Y,Z) = D_X D_Y Z - D_Y D_X Z - D_{(X,Y)} Z.$$

Contracting (2.4) with respect to X

$$\hat{R}ic(Y,Z) = Ric(Y,Z) + (n-1)\{g(\bar{Y},\bar{Z}) - g(\bar{Y},Z)\}
-g(Y,Z) - u(Y).u(Z) + g(\bar{Y},Z)$$
(2.5)

i.e.
$$\operatorname{Ric}(Y,Z) = \operatorname{Ric}(Y,Z) + (n-2)\{g(\overline{Y},\overline{Z}) - g(\overline{Y},Z)\}.$$

Contracting (2.5), we get

$$RY = RY + (n-1)\{\overline{\overline{Y}} - \overline{Y}\} - Y - u(Y).U + \overline{Y}$$

i.e.

$$RY = RY + (n-2)\{\overline{\overline{Y}} - \overline{Y}\}, \tag{2.6}$$

i.e.

$$RY = (n-1)Y + (n-2)\{Y + u(Y) \cdot U - \overline{Y}\}. \tag{2.7}$$

Contracting above equation with respect to 'Y'

$$p = r + (n-1)(n-2),$$
 (2.8)

where $\, \mathcal{H} \,$ and 'r' are scalar curvature with respect to $\, E \,$ and $\, D \,$ in $\, V_n \,$.

3. Properties of Semi-symmetric Metric Connection

Theorem 3.1. In V_n , we have

(i)
$$(E_X F)Y = \{g(X,Y) - g(X,\overline{Y})\}U + u(Y)(X - \overline{X}) + 2u(X)u(Y)U$$
 (3.1)

(ii)
$$E_{\bar{X}}U = \bar{X} - \bar{\bar{X}}$$
 (3.2)

(iii)
$$(E_{\mathbf{v}}u)Y = g(X,\overline{Y}) - g(\overline{X},\overline{Y})$$
 (3.3)

Proof. As we know that

(i)
$$(E_X F)Y = E_X \overline{Y} - \overline{E_X Y}$$

$$= D_X \overline{Y} + 0 - g(X, \overline{Y})U - \overline{D_X Y} - u(Y)\overline{X} + 0 = (D_X F)Y - g(X, \overline{Y})U - u(Y)\overline{X}$$

$$= g(X, Y).U + u(Y)X + 2.u(X).u(Y).U - g(X, \overline{Y}).U - u(Y)\overline{X}$$

$$= \{g(X, Y) - g(X, \overline{Y})\}.U + u(Y)(X - \overline{X}) + 2u(X).u(Y).U.$$

From (2.1), we have

(ii)
$$E_X U = D_X U + u(U).X - g(X,U)U$$
$$= \overline{X} - X - u(X).U = \overline{X} - \overline{\overline{X}}.$$

(iii) Taking covariant derivative of u(Y) with respect to connection 'E' and 'D', we get

$$X(u(Y)) = (E_X u)Y + u(E_X Y)$$

and

$$X(u(Y)) = (D_{Y}u)Y + u(D_{Y}Y)$$

from above two equations, we have

$$0 = (E_X u)Y - (D_X u)Y + u(E_X Y - D_X Y)$$

$$(E_X u)Y = (D_X u)Y - u(X)u(Y) - g(X,Y) = g(X,\bar{Y}) - g(\bar{X},\bar{Y}).$$

Theorem 3.2. In V_n , we have

$$R(X,Y,Z) + R(Y,Z,X) + R(Z,X,Y) = 0. (3.4)$$

Proof. By cyclic rotation of X, Y, Z in equation (2.4), we get three equations. Adding these three equations and using

$$K(X,Y,Z) + K(Y,Z,X) + K(Z,X,Y) = 0.$$

We get the required result.

Theorem 3.3. In V_n , the conformal curvature tensor \mathcal{O}^0 with respect to semi-symmetric metric connection E is same the conformal curvature tensor with respect to Levi-Civita connection D.

Proof. Conformal curvature tensor with respect to connection 'E' and 'D' denoted by Q^0 and Q are defined as

$$Q(X,Y,Z) = R(X,Y,Z) - \frac{1}{n-2} \{ \text{Ric}(Y,Z)X - \text{Ric}(X,Z)Y + g(Y,Z) \text{RX} \}$$

$$-g(X,Z) \text{RY} \} + \frac{96}{(n-1)(n-2)} \{ g(Y,Z)X - g(X,Z)Y \},$$

$$Q(X,Y,Z) = K(X,Y,Z) - \frac{1}{n-2} \{ \text{Ric}(Y,Z)X - \text{Ric}(X,Z)Y + g(Y,Z)RX \}$$
(3.5)

$$-g(X,Z)RY\} + \frac{r}{(n-1)} \{g(Y,Z)X - g(X,Z)Y\},\tag{3.6}$$

where R(X,Y,Z) and K(X,Y,Z), Ric and Ric, Roand R, Mand r are curvature tensor, Ricci tensor, Ricci map and scalar curvature with respect to connection E and D, respectively.

Using (2.4), (2.5), (2.6), (2.7) and (2.8) in equation (3.5), we get

$$\mathcal{O}(X,Y,Z) = Q(X,Y,Z). \tag{3.7}$$

Corollary 3.3. If V_n is a LP-Sasakian space form then it is conformally flat with respect to E.

Proof. If V_n is a LP-Sasakian space form, then we have

$$K(X,Y,Z) = g(Y,Z)X - g(X,Z)Y.$$

In this manifold, we have

$$Q(X,Y,Z) = 0.$$

Using this fact in (3.7), we get the result.

Theorem 3.4. In V_n , the conharmonic curvature tensor \mathcal{L}^{ℓ} with respect to connection E is given as

$$\mathcal{L}(X,Y,Z) = L(X,Y,Z) - \{g(Y,Z)X - g(X,Z)Y\}$$
(3.8)

where 'L' is conharmonic curvature tensor with respect to connection D.

Proof. As we know that conharmonic curvature tensor \mathcal{L}^k with respect to semi-symmetric metric connection 'E' is given as

$$\mathcal{L}(X,Y,Z) = R(X,Y,Z) - \frac{1}{n-2} \{ \hat{R}ic(Y,Z)X - \hat{R}ic(X,Z)Y + g(Y,Z)\hat{R}X - g(X,Z)\hat{R}Y \}.$$
 (3.9)

Using (2.4), (2.5), (2.6) and (2.7) in (3.9), we get the required result.

Corollary 3.4. If V_n is a LP-Sasakian space form, then we have

$$\mathcal{L}(X,Y,Z) = -\frac{2(n-1)}{(n-2)}K(X,Y,Z). \tag{3.10}$$

Proof. If V_n is a LP-Sasakian space form, then we have

$$K(X,Y,Z) = g(Y,Z)X - g(X,Z)Y$$
 (3.11)

$$L(X,Y,Z) = \frac{n}{n-2} \{ g(Y,Z)X - g(X,Z)Y \}.$$
 (3.12)

Using (3.11) and (3.12) in (3.8), we get the required result.

Theorem 3.5. The concircular curvature tensor \mathcal{C}^0 with respect to semi-symmetric metric connection 'E' is given by in V_n , the conharmonic curvature tensor \mathcal{L}^0 with respect to connection E is given as

$$\mathcal{C}(X,Y,Z) = C(X,Y,Z) + \{g(\bar{Y},\bar{Z}) - g(\bar{Y},\bar{Z})\}X - \{g(\bar{X},\bar{Z}) - g(\bar{X},Z)\}Y - g(Y,Z)\bar{X} + g(X,Z)\bar{Y}\}X - \{g(\bar{X},\bar{Z}) - g(\bar{X},Z)\}Y - g(\bar{X},Z)\}Y - g(\bar{X},Z)\bar{Y}\}X - \{g(\bar{X},\bar{Z}) - g(\bar{X},Z)\}Y - g(\bar{X},Z)\bar{Y}\}X - \{g(\bar{X},\bar{X}) - g(\bar{X},Z)\}Y - g(\bar{X},\bar{X})\bar{Y}\}X - \{g(\bar{X},\bar{X}) - g(\bar{X},Z)\}Y - g(\bar{X},\bar{X})\bar{Y}\}X - \{g(\bar{X},\bar{X}) - g(\bar{X},\bar{X})\}Y - g(\bar{X},\bar{X})\bar{Y}\}X - g(\bar{X},\bar{X})\bar{Y}\}X - g(\bar{X},\bar{X})\bar{Y}\}X - g(\bar{X},\bar{X})\bar{Y}X - g(\bar{X},\bar{X$$

$$+g(Y,Z)u(X)U - g(X,Z)u(Y).U - \frac{(n-2)}{n} \{g(Y,Z)X - g(X,Z)Y\}$$
 (3.13)

Proof. As we know that conharmonic curvature tensor \mathcal{C}_0 with respect to E is define as

$$\mathcal{C}(X,Y,Z) = R(X,Y,Z) - \frac{9\%}{n(n-1)} \{ g(Y,Z)X - g(X,Z)Y \}.$$
(3.14)

Putting the value of R(X,Y,Z) and \mathcal{H} from equation (2.4) and (2.8) in (3.14), we get the required result.

Corollary 3.5. If V_n is a LP-Sasakian space form, then concircular curvature tensor \mathcal{C}_n with respect to E can also be given by equation

$$\hat{C}(X,Y,Z) = \frac{2}{n}K(X,Y,Z) + u(Z).K(X,Y,U) - K(\bar{X},Y,Z) - K(X,\bar{Y},Z) + u(K(X,Y,Z)).U.$$
(3.15)

Proof. In LP-Sasakian space form V_n , we know that

$$K(X,Y,Z) = g(Y,Z)X - g(X,Z)Y,$$

$$K(\bar{X},Y,Z) = g(Y,Z)\bar{X} - g(\bar{X},Z)Y,$$

$$K(X,\bar{Y},Z) = g(\bar{Y},Z)X - g(X,Z)\bar{Y},$$

$$K(X,Y,U) = u(Y).X - u(X)Y,$$

$$u(K(X,Y,Z)) = g(Y,Z)u(X) - g(X,Z)u(Y),$$

$$g(\bar{X},\bar{Y}) = g(X,Y) + u(X)u(Y),$$

$$C(X,Y,Z) = 0.$$

Using these results in (3.13), we can easily get (3.15).

Theorem 3.6. The projective curvature tensor P_0 in V_n with respect to connection E is given by

$$P(X,Y,Z) = P(X,Y,Z) + \frac{1}{n-1} [\{g(\bar{Y},\bar{Z}) - g(\bar{Y},Z)\}X + \{g(\bar{X},\bar{Z}) - g(\bar{X},Z)\}Y] - g(Y,Z)\bar{X} + g(X,Z)\bar{Y} + g(Y,Z)u(X)U - g(X,Z)u(Y)U.$$
(3.16)

Proof. Projective curvature tensor p_0 with respect to connection E is given by

$$P(X,Y,Z) = R(X,Y,Z) - \frac{1}{n-1} [\text{Ric}(Y,Z)X - \text{Ric}(X,Z)Y].$$
 (3.17)

Using (2.4) and (2.5) in above, we get the required result.

References

- **De, U. C.:** On type of semi symmetric metric connection on a Riemannian manifolds, An. Stiint. Univ. "Al I. Cuza" Iasi Sect. I Math., 38 (1991), 105 108.
- **2. Fridmann, A. and Schouten, J. A.** : Über die Geometric der holbsymmetrischen, Übertragurgen Math. Z 21 (1924), 211-233.
- **Mishra, R. S. and Pandey, S. N.:** On quarter-symmetric metric F connections, Tensor, N. S., 34 (1980), 1-7.
- 4. Sharfuddin, A. and Hussain, S. I.: Semi-symmetric metric connection in almost contact manifold.